<code id="w8tyq"></code>
<listing id="w8tyq"></listing>
<code id="w8tyq"></code> <legend id="w8tyq"><em id="w8tyq"><track id="w8tyq"></track></em></legend>

    您的浏览器版本太低,请使用IE9(或以上)、谷歌、火狐等现代浏览器ag平台娱乐官网登录。360、QQag平台娱乐官网登录、搜狗等浏览器请使用极速模式。
    学院发表文章

    Study on Summer Maize Yield Responses to Remote Sensing Drought Indices in Henan Province with GWR Model

    发布日期:2020-01-03浏览次数:信息来源:土地科学与技术学院

    Yan Wang   Hongshuo Wang   Weizhong Yang   Yuan Li

    Abstract

    Based  on  MODIS  sensor-based  vegetation  index  (MOD13A3)   and   surface   temperature(MOD11A2)   product      and  Henan  summer  maize  yield  data,  comparing  the  fitting  results     of     Ordinary     Least     Square     (OLS)     and     the     Geographically  Weighted  Regression  model  (GWR),  Studied  the spatial heterogeneity of drought monitoring index affect on summer  maize  yield  during  summer  maize  growth  in  Henan  Province.The   results   showed   that   in   Henan   Province,   the   impact  of  drought  on  summer  maize  yield  was  significantly  spatially heterogeneous, and the drought reflected by VCI had a  greater  impact  on  summer  maize  yield  than  TCI.  On  the  whole,  there  is  a  trend  of  weakening  from  north  to  south,  and  human activities such as fertilization and irrigation will reduce the impact of drought on summer maize yield.

    Keywords

    Geographically    Weighted    Regression    model    (GWR), Drought monitoring, remote sensing,  summer maize


    Study on Summer Maize Yield Responses to Remote Sensing Drought Indices in Henan Province with GWR Model.pdf

    ag平台娱乐官网登录